Вспышка A-TTL как ведомая в системе E-TTL2

Canon EOS A-TTL, E-TTL и E-TTL II

При работе с накамерными системными вспышками, наиболее корректным методом экспонометрии является замер света, прошедшего через объектив фотокамеры (от англ. Through The Lens«через объектив»). В таком случае автоматически учитываются все поправки на светосилу объектива, используемые светофильтры и насадки, а угол замера – также автоматически согласовывается с углом зрения объектива. Поэтому современные системы управления вспышкой построены именно на принципе TTL-замера. Естественно, автоматический TTL-замер не лишён недостатков, и каждая фирма, разрабатывая и совершенствуя свою собственную систему управления вспышкой, шла по своему пути.

В основе работы вспышек Canon EOS system лежит технология TTL , которая включает в себя модуль с датчиками, расположенными в нижней части внутреннего пространства зеркальной камеры. Датчики измеряют освещённость поля кадра в момент съёмки. Как только экспозиция (произведение освещенности и времени экспонирования) поля кадра достигает пороговой величины, электроника фотоаппарата прерывает импульс вспышки.

На сегодняшний день существует три поколения системы EOS flash system: A-TTL, E-TTL и E-TTL II.

[dropcap]A-TTL[/dropcap](англ. Advanced-Through The Lens) — первая реализация технологии EOS flash system, впервые появившаяся в камере Canon T90 1986 года. Принцип работы A-TTL заключается в использовании дополнительной инфракрасной лампы, установленной на неподвижной части корпуса вспышки. Там же находится датчик освещённости, который измеряет количество света, отраженное от объекта съёмки после импульса инфракрасной вспышки.

В момент нажатия кнопки спуска затвора инфракрасная вспышка выдаёт импульс, направленный параллельно оси объектива. Датчик, расположенный на вспышке, производит замер отраженного от объекта света и передаёт данные (выдержка и диафрагма) в фотоаппарат для расчёта экспозиции и мощности основного импульса вспышки. Фотоаппарат, кроме того, производит замер общей освещённости поля кадра без вспышки (до инфракрасного импульса).

Данные, полученные в результате двух замеров, сравниваются, и при необходимости производится коррекция предварительных расчётов экспозиции. После этого открывается затвор и производится экспонирование. В это время срабатывает основная вспышка и TTL-датчики замеряют освещённость поля кадра на основе количества света, отраженного от плёнки или матрицы. При риске пересвета импульс вспышки отсекается.

Недостатки A-TTL замера

В случае, если объект в кадре имеет высокую отражающую способность (например, в кадре человек рядом с зеркалом), высока вероятность ошибки в расчётах мощности основного импульса и экспозиционных данных. Кроме того, ошибки могут возникать в том случае, если основной импульс производится не напрямую в объект съёмки, а в потолок или отражатель. A-TTL вспышки не работают в режиме сверхскоростной синхронизации при выдержках короче 1/250 с.

[dropcap]E-TTL[/dropcap](англ. Evaluative-Through The Lens) — развитие технологии EOS flash system, в отличие от A-TTL предусматривающее использование основного излучателя для предварительной вспышки. Таким образом значительно сокращается вероятность ошибок расчёта экспозиции и мощности импульса при использовании отражающих свет поверхностей, если головка вспышки направлена не на объект съёмки. Кроме того, также как и в A-TTL, встроенный в камеру сенсор при необходимости прекращает работу вспышки.

Для расчёта экспозиции и мощности основного импульса используется тот же сенсор, что и для замера освещённости в обычных условиях (а не отдельный, как в A-TTL). E-TTL вспышки работают в режиме сверхскоростной синхронизации при выдержках короче 1/250 с, вплоть до 1/8000 с (в зависимости от возможностей фотоаппарата). Если в режиме обычной синхронизации сначала полностью открывается затвор, после чего вспышка при открытом затворе экспонирует кадр, то в режиме сверхскоростной синхронизации вспышка выдаёт высокочастотный, растянутый по времени импульс, который дольше, чем время, на которое открывается затвор и состоит из множества коротких импульсов. Совокупная мощность импульса при таком способе работы меньше, чем при обычном режиме работы.

Последовательность замера экспозиции в E-TTL следующая:

1) при полунажатии на спуск производится замер яркости от постоянного освещения,
2) включается предвспышка небольшой мощности и сенсоры экспозиции замеряют новое значение яркости,
3) из измерения яркости со вспышкой вычитается значение первоначального замера без вспышки,
4) в момент полного нажатия на спуск происходит еще один замер яркости от окружающего света без вспышки (чтобы учесть возможность перекадрировки) и вычисляется требуемая величина импульса вспышки,
5) производится экспонирование, срабатывает вспышка.

Если съемка производится в режиме автофокуса, расчет экспозиции производится с учетом положения фокусировочной зоны. В случае ручного фокуса акцент при расчете экспозиции делается на самую «яркую» зону.

E-TTL впервые появилась в 1995 году в камере Canon EOS 50.

[dropcap]E-TTL II[/dropcap](англ. Evaluative-Through The Lens 2) — последний на сегодня механизм взаимодействия камеры и вспышки, впервые появившийся в камере Canon EOS-1D Mark II в 2004 году. В отличие от предшественницы, E-TTL II использует все доступные зоны замера экспозиции, а также учитывает расстояние до объекта.

В E-TTL II кроме данных об экспозиции без оценочного импульса и с ним, учитывает и дистанцию до объекта съемки, которая «сообщается» сфокусированным на объект объективом. Зачем это нужно? Приведем один возможный пример. Может случиться так, что объект занимает небольшую часть кадра и E-TTL попросту не учтет его и вся экспозиция будет рассчитана под окружающий фон. А если положение объекта в пространстве задано, то в экспозицию будет внесена нужная корректива.

Стандарт TTL, A-TTL, E-TTL и 3D Fill In Balanced Matrix Flash

При сравнении данных систем работы аппаратов со вспышкой хотелось бы отметить, что все они являются системами TTL , то есть во всех случаях измеряется и оценивается количество света, прошедшее через объектив. А вот в том как измеряется и как оценивается и заключается суть различий.

Система TTL

Стандартная система TTL действует следующим образом:
аппарат и вспышка не знают, сколько понадобиться света для получения правильной экспозиции. При срабатывании затвора (открытии полной площади кадрового окна) зажигается вспышка. Специальный сенсор в аппарате улавливает свет, прошедший через объектив и отраженный от пленки, и “считает” его, в момент достижения правильной, по мнению аппарата, экспозиции камерой активируется специальный прерыватель во вспышке и вспышка практически мгновенно прекращает свечение. При этом неиспользованная энергия конденсатора вспышки остается в полной сохранности и время необходимое для перезарядки емкости существенно сокращается. Старые и дешевые вспышки могут не иметь такой автоматики, что приводит к увеличенному расходу энергии и длительной зарядке до готовности
Некоторые недостатки заключаются в том, что из-за абсолютно разных условий съемки и разных отражающих свойств объектов правильная экспозиции в некоторых случаях практически невозможна. Обычно такая система расчитана на то, что отражающие способности сцены близки к отражающей способности стандартной серой карты (отражает около 18% света). Не трудно представить себе ситуацию, которая серьезно отличается от подобной. Скажем светлые объекты (стена, бумага, светлый фон), занимающие бОльшую площадь кадра отражают света значительно больше, чем 18%. Доверяя автоматике на 100% в такой ситуации мы получим недодержку приблительнов 2 ступени. Хотя справедливости ради нужно заметить, что ситуации эти вообщем-то известны и легко исключаемы в бытовой съемке. В примере чуть выше необходимо просто установить поправку экспозиции. Это быстро приходит с опытом.
Стандартная TTL-система вполне приемлема по качеству и удобству для съемки в большинстве случаев, хотя и далека от идеала.
В тоже время поиски более устойчивых к ошибкам и сложным ситуациям методов определения правильности экспозиции вспышки толкнули некоторые фирмы на изобретение собственных систем работы со вспышкой, значительно более сложных.

Система A-TTL

Система, применяемая в некоторых аппаратах фирмы Кэнон, A-TTL, помимо стандартного TTL замера учитывает также расстояние до объекта съемки (в ряде случаев).
В данном случае избегаются наиболее частые ошибки, такие как достаточно близкий объект съемки и практически темный задний фон (огромный зал и т.п.). Света, отраженного от объекта съемки в этом случае для стандартной системы явно не хватило бы и вспышка выдала бы мощность бОльшую, чем необходимо. Результатом явился бы передержанный передний (в данном примере главный) план. Единственная выпускаемая на данный момент вспышка, в которой есть главный режим работы A-TTL -Canon Speedlite 540EZ, излучает предварительный импульс в инфракрасном диапазоне, который улавливается сенсором на передней части. Это уточняет расстояние до объекта и необходимую экспозицию.
Естественно, что A-TTL будет работать только при стандартном (излучателем строго вперед) положении вспышки. Вычислить предполагаемую мощность в отраженном свете практически невозможно. Для этого нужно быстро измерить расстояние до плоскости отражения, отражающие свойства материала, немного посчитать на калькуляторе, что вспышка конечно сделать не может. При поворачивании головы вспышки A-TTL отключается.
В снятой с производства вспышке 430EZ была возможность работать в системе A-TTL с любым положением излучателя. При “нормальном” положении излучателя вспышка использовала для оценки экспозиции инфракрасный импульс, а в других положениях излучателя вспышка применяла для определения экспозиции импульс самой лампы излучателя. Система A-TTL совместима со всеми аппаратами и вспышками 430EZ (уже не выпускается) и 540EZ.
Небольшое описание вспышки 540EZ.

Соблюдая хронологию следующим стал Никон.

Система 3D Multi Sensor Ballanced Fill-In Flash

Наиболее совершенный режим работы вспышек Никон. Эта система принципиально отличается от предыдущих. Кратко механизм работы.

Читайте также:  Помогите подобрать компактную камеру высшей категории

Сразу после поднятия зеркальца, перед тем как начнется движение затвора, вспышки SB26, SB27, SB28 излучают серию быстрых тестирующих предвспышек, которые, отражаясь от закрытых шторок затвора, улавливаются системой TTL Multi Sensor (5-сенсорная система) камеры. Более того, информация о удаленности объекта передается от объектива серии D и обрабатывается камерой вместе с информацией системы TTL. Это автоматически вносит коррективы мощности вспышки. После этого открывается затвор и происходит заранее рассчитанный импульс вспышки. Система возможна в комбинации вспышек SB26, SB27, SB28 и камер N70(F70), N90(F90)серии , F100 и F5, при использовании объективов D.
Неполные сочетания устройств плодят системы похожие, но отличающиеся. Подробнее о них можно прочитать здесь
Эта система практически исключает ошибки. Примеры: фото на фоне отражающего материала, съемка при недостаточном основном освещении объекта на фоне бесконечного пейзажа, на фоне окна, на фоне заката, источника света (контровое освещение) и т.д и т.п. Вообщем хорошая система.

Сисета E-TTL (Evaluative-Through-The-Lens) auto flash control

В отличие от TTL, A-TTL да и 3D автоматических систем вспышек, которые используют специальный многозонный сенсор для определения экспозиции, система E-TTL использует нормальный замер через систему экспонометрии камеры и автоматически определяет экспозицию вспышки.

События развиваются следующим образом:
при нажатии на кнопку спуска затвора вспышка излучает тестирующие импульсы, которые улавливаются системой, совмещенной со стандартной системой экспонометрии камеры, информация о расстоянии передается от объектива (не во всех случаях), таким образом вспышка уже знает, какая понадобиться мощность главного импульса. Далее происходит поднятие зеркальца и срабатывание затвора.
Все это происходит абсолютно молниеносно и для глаза незаметно. (но вполне заметно для светосинхронизаторов несогласованных вспышек) К тому же есть возможность заранее тестирующим импульсом определить необходимую экспозицию вспышки и заблокировать это значение, так как эта система не предполагает каких либо механических (как в 3D) действий камеры.
Система E-TTL позволяет более точно определить правильную экспозицию и ускоряет работы AIM (Advanced Integrated Multi-point (усовершенствованой продвинутой многоточечной)) системы, которая привязывает замер и экспозицию к точке фокусировки, что важно для камер CANON.
Более подробно о возможностях 380EX здесь

Не TTL автоматическая работа вспышки предполагает установку значения диафрагмы и чувствительности пленки на вспышке. Отраженный во время свечения вспышки свет улавливается сенсором на корпусе вспышки, который определяет достижение правильной экспозиции и выключает вспышку, ориентируясь на установленную чувствительность пленки и диафрагму.
Самая простая система вспышек -ручное управление – не предполагает какого либо автоматизма в работе. Необходимая для правильной экспозиции диафрагма определяется в зависимости от расстояния до объекта и чувствительности используемой пленки, с помощью таблицы на задней панели вспышки или с помощью формулы.

Вспышка A-TTL как ведомая в системе E-TTL2

Я очень часто пользуюсь E-TTL, поскольку это действительно удобно. Ошибается данный режим достаточно редко и я уже знаю в каких случаях. Причем зачастую не нужно переключаться в ручной режим и достаточно просто внести экспокоррекцию на вспышке и переснять кадр.

Рассмотрим как работает режим E-TTL II.

1. После того как вы нажимаете кнопку спуска наполовину встроенный в камеру экспонометр оценивает окружающий свет (отраженный от объектов) сцены через TTL-технологию (through the lense). Зеркало находится при этом в исходном неподнятом состоянии.
2. После того как кнопка спуска нажимается полностью камера дает команду вспышке сделать маломощную предвспышку. Экспонометр снова замеряет свет.
3. Анализируя значения этих двух замеров, рассчитывается подходящая мощность вспышки и сохраняется в памяти камеры.
4. При превышении экспозамера в 10 EV происходит коррекция (auto fill reduction), понижающая мощность импульса вспышки. Алгоритм не опубликован и что конкретно при этом происходит никому кроме разработчиков Canon не известно.
5. Далее поднимается зеркало, открывается затвор.
6. Вспышка срабатывает согласно выбранного режима по первой или второй шторке, импульс длится ровно столько сколько рассчитала камера.
7. Закрывается затвор, опускается зеркало.
8 . Вспышка передает в камеру информацию о цветовой температуре вспышки. Данная информация записывается в RAW-файл (CR2).

А теперь важные детали, которые нужно знать о пункте 3, которые практически нигде не описаны. При расчете мощности используются значения всех зон сенсора, но особую значимость имеют при этом зоны в точках фокусировки. В режиме ручной фокусировки используется центральная точка и оценочный замер. А теперь интересная особенность: при оценке мощности не берется в расчет выдержка, а только диафрагма, ISO и фокусное расстояние. Чем больше фокусное расстояние, тем больше мощность. Чем больше ISO, тем меньше мощность. Чем больше апертура, тем меньше мощность. Если у Вас вспышка Speedlite 580 EX II вы можете надев зум-объектив убедиться в этом. Повращайте зум и нажимая на кнопку спуска на половину проследите как меняется эффективное расстояние действия вспышки на её ЖК-экране. Также можно посмотреть как меняется мощность в зависимости от изменения диафрагмы и ISO. Дополнительно в режиме E-TTL II в оценке используется информация о дистанции до объекта, если такую информацию может предоставить объектив (не все старые объективы обладают такой возможностью). Информация о дистанции не берется в расчет когда вспышка направлена на отражение, макро-вспышка и беспроводная E-TTL вспышка. Однако если вспышка подключена через синхрошнур, дистанция учитывается.

Кратко опишу проблемы, которые могут возникнуть при использовании режима E-TTL II:

1. Некоторые люди обладают мгновенной реакцией на предвспышку в режиме E-TTL и успевают моргнуть. В этом кроется главный недостаток этого режима. Особенно эта проблема проявляется при съемке по второй шторке и на относительно длинных выдержках. Данная проблема решается нажатием кнопки FEL (на моей камере это кнопка *, между кнопкой зума и автофокуса), после этого выждав паузу можно сделать снимок.

2. Другая проблема достаточно экзотична и вы вряд ли с ней столкнетесь – это срабатывание ведомых вспышек, работающих через оптические триггеры (вспышки Nikon обладают такой возможностью, если включить соответствующую функцию на них). Поэтому, если где-нибудь снимая репортаж вы заметите, что ваша вспышка также поджигает вспышки других фотолюбителей, попросите этих уважаемых людей выключить функцию ведомой вспышки.

Надо сказать, что подробная информация о работе E-TTL II отсутствует, впрочем большинству фотолюбителей эти сведения возможно и ни к чему, хотя мне бы было интересно, например, узнать в каких случаях наиболее вероятны ошибки E-TTL II. Для себя нужно усвоить одно правило: тщательно контролировать точки фокусировки, тем более, если они определяются автоматически.

А лучше всего всегда использовать центральную точку фокусировки и кнопку FEL, хоть это и не очень удобно. Одна из распространенных ошибок заключается в том, что когда сперва фокусируетесь на объекте, а затем меняете композицию и нажимаете кнопку спуска, с большой вероятностью можно получить неверно рассчитанную мощность вспышки в E-TTL II, например, в случае когда точка по которой сфокусировались оказалась в пустоте или на второстепенном объекте. Помните, что экспозамер работает постоянно и нажав кнопку спуска наполовину вы лишь запустили процесс постоянного экспозамера, который продолжается до тех пор, пока кнопка не будет нажата полностью. Поэтому будьте аккуратней и используйте кнопку FEL (на моей камере эта кнопка обозначена звездочкой) там, где нужно изменить композицию кадра.

И конечно, же необходимо постоянно контролировать расстояние действия вспышки на ЖК-экране, поскольку от неё зависит будет ли ваша вспышка работать как заполняющая, в случае, если вы не снимаете на отражение.

Практическое задание

Изменяя параметры экспозиции и ФР изучите как меняется эффективное расстояние действия вспышки.

gzoor › Блог › Введение в стробизм. Удаленное управление накамерными вспышками, часть 1.

Данный материал появился на свет по причине часто возникающих вопросов, касающихся удаленного использования накамерной вспышки. Он не охватывает целиком столь обширную тему, это скорее введение в стробизм и желание поделиться собственным опытом. Для стробосъемки нужны следующие вещи, которым я посвящу первую часть материала:
1. Камера (кто бы мог подумать? :)),
2. Накамерная вспышка,
3. Синхронизатор.

Это необходимый минимум.
Для более комфортной работы и большего контроля за светом потребуются:
1. Стойка,
2. Головка крепления для вспышки,
3. Модификаторы света (зонты, софтбоксы, октабоксы, сотовые насадки и т. п.),
4. Гели (конверсионные и цветные).
Это будет рассмотрено во второй части.

Фотовспышки.
Можно использовать любые внешние вспышки, имеющие синхроконтакт. Главное, чтобы снихронизатор мог с ними «подружиться» и не сгореть. Старые вспышки, от пленочных камер, имеют высокое напряжение на синхроконтакте. У меня валяется древняя вспышка, которую я использовал с Зенитом – Unomat 20, кажется. Ее можно использовать, только со специальными понижителеми напряжения, типа этих: ПОНИЖИТЕЛИ. Справедливости ради, один раз я устанавливал эту вспышку на Canon 450D. Ничего не сгорело, только я бы предостерег вас от подобных экспериментов.
Старые вспышки — это совсем уж бюджетный вариант и я не буду их рассматривать. Обратим наш взор на современные, системные (“родные”) и не системные (“не родные”).
Первые надежны, корректно работают в автоматическом режиме, управляются с камеры, но стоят ощутимо. Вторые дешевы, но имеют проблемы с расчетом мощности импульса и качеством. Что предпочесть? Тут все просто, есть деньги – системные, нет – не системные. Дело в том, что работа в автоматическом режиме и удаленное управление с камеры или передатчика поддерживается дорогими TT-L синхронизаторами или средствами самой вспышки. В остальных случаях, мощность выставляется в ручную, на самой вспышке, а синхронизатор только синхронизирует импульс используя центральный контакт.
Еще, если собирать комплект из нескольких вспышек, то из «не родных» он обойдется ощутимо дешевле. Есть только один момент. По моему мнению, если вспышка одна, то она должна быть системной. При работе в качестве накамерной, глюки и низкое качество могут стоить нервов и дополнительных расходов на ремонт.

Читайте также:  Nikon D60 или Nikon D3000?

Синхронизация.
Синхронизировать вспышку можно многими способами: кабель, световая ловушка, инфракрасный синхронизатор, комплектом из ведущей и ведомой вспышки, радиосинхронизатор, радиосинхронизатор с TTL. Вроде бы ничего не забыл.

TTL-Кабель.
У меня такой давно лежит без дела, после появления радиосинхронизаторов. Полезен при предметной съемке, когда не надо далеко свет относить или когда вспышка на стробофрейме. «+»:
— дешев (я не о «родном»),
— вспышка может работать в автоматическом режиме (если умеет). «-»:
— далеко вспышку не отнесешь,
— возможно подключить только одну вспышку. Есть китайские кабеля со сквозным горячим башмаком. С ними можно установить еще одну вспышку на камеру. Только толку от этого немного.

PC синхрокабель.
Это кабель с PC-разъемами на концах. Длина может достигать десятка метров. При отсутствии соответствующего разъема на камере (а это бюджетные любительские модели), требуется переходник с PC разъемом, типа такого: ПЕРЕХОДНИК ДЛЯ КАМЕРЫ и переходник для фотовспышки с PC разъемом, типа такого: ПЕРЕХОДНИК ДЛЯ ФОТОВСПЫШКИ.
Стоимость такого комплекта равна стоимости более или менее приличного синхронизатора, работать с которым гораздо удобнее.
Плюсов я не вижу, а минусы то же, что и у TTL – кабеля.

Световая ловушка.
Синхронизация происходит по световому импульсу. «+»:
— дешева, свободу перемещения не ограничивает,
— может работать со встроенной вспышкой (требуется только ловушка на вспышке). Есть модели, которые могут синхронизируются по второму импульсу, пропуская импульс TTL-замера.
— количество синхронизируемых вспышек не ограничено. «-»:
— малая дальность действия,
— может не сработать, если светоловушка находится не в пределах прямой видимости,
— не срабатывает на ярком свету (большей частью, использование ограничено студией). На улице слепнет.

Инфракрасный синхронизатор.
Передатчик на камере, посредством ИК сигнала, синхронизируется с приемником на вспышке. В студии жизнеспособно, на улице нет. «Минусы» как и у светоловушки, плюс большие габариты.
Стоит почти как дешевый радиосинхронизатор.

Системные ведущие и ведомые TTL вспышки.
Речь идет о «родных», т. к. в них реализовано полноценное управление.
Требуется ведущая вспышка, как правило, это вспышка топового уровня и ведомые. Эти уже могут быть попроще. Если говорить о Canon, то ведущая это Canon Speedlite 580EX, Canon Speedlite 580EXII, Canon Speedlite 600EX и Canon Speedlite 600EX-RT. Или трансмиттер Canon ST-E2. В качестве ведомых выступают те же, топовые вспышки и более простые Canon Speedlite 430EX Canon Speedlite 430EXII. «+»:
— полный контроль над вспышками. Управляются легко и просто как с камеры, так и с ведомой вспышкой,
— доступна высокоскоростная синхронизация, вплоть до 1/8000 (зависит от камеры),
— объединение в группы и управление ими,
— работа в E-TTL II,
— подсветка точки фокусировки. «-»:
— цена такого комплекта удручает. Сильно удручает.
— небольшая дальность действия,
— не срабатывает, если вспышки не видят друг-друга (например, если ведомая вспышка в софт-боксе или за углом). У меня бывали случаи, когда система срабатывала через раз в большом помещении,
— может не срабатывать на улице, при ярком солнечном свете,
— нет возможности комбинировать различные типы вспышек. Например, «родные» и «не родные».

Радиосинхронизатор.
Теперь, начинается самое интересное 🙂
На рынке представлено большое количество радиосинхронизаторов. Система состоит из передатчика и приемника, связанных по радиоканалу. Самые дешевые умеют только синхронизировать импульс, более дорогие могут работать как радиопульт дистанционного управления. Достаточно приемник подключить специальным кабелем к камере. Передатчик будет выступать в качестве пульта. Для чего на нем присутствует кнопка. Все как на камере, полу-нажатие – фокусировка, нажатие – срабатывание затвора.
На приемнике и передатчике присутствует переключатель каналов на тот случай, когда несколько фотографов, со своим оборудованием, работают рядом. Кстати, если ваш синхронизатор перестал работать, убедитесь, что приемник и передатчик настроены на один канал.

На что обратить внимание при выборе?
1. Общий конструктив и прочность пластика.
2. Пятка приемника должна фиксироваться прижимной гайкой. Ведь не хочется, чтобы дорогая вспышка грохнулась с высоты стойки об бетонный пол?
3. Пятка передатчика должна фиксироваться гайкой в горячем башмаке камеры. У моих Yongnuo RF-602 передатчик, иногда, выскакивает. Теряется контакт и это раздражает. Да и потерять его можно.
4. Наличие выключателя на приемнике и передатчике. У Yongnuo RF-602 выключатель только на приемнике. Батарейка в передатчике разрядилась от ношения в сумке, кнопка теста/спуска пребывала в нажатом состоянии. Приходиться подкладывать кусок бумажки между батарейкой и контактом.
5. Количество доступных каналов. 2-позиционный переключатель хорошо, 4-хпозиционный лучше.
6. Возможность подключения к студийным моноблокам. «+»:
— дальность действия до 100 м.,
— работа в любых условиях. Свет, темнота, дождь, снег, студия, улица и т. п., не помеха,
— неограниченное количество приемников,
— компактные размеры и малая масса,
— могут работать при отсутствии прямой видимости,
— возможность подключить любой импульсный источник, в любых сочетаниях, лишь бы был синхроконтакт.
— возможность работать в качестве пульта ду, у некоторых моделей. «-»:
— у более или менее приличных, стоимость может быть высока. Хотя, кабель или ик-синхронизатор могут быть сопоставимы по цене.
— не могу больше ничего придумать… 🙂 Несмотря на то, что я указал недостатки Yongnuo RF-602, осмелюсь рекомендовать этот комплект к покупке, или что-нибудь из новых серий. Работает надежно, в течении уже нескольких лет.

E-TTL синхронизатор.
Это самый удобный и комфортный способ синхронизации. В зависимости от производителя разняться стоимость, функциональность и удобство управления. Самый доступный комплект – это Yongnuo YN-622C, средняя стоимость около 4,5 тыс рублей и около 2,5 тыс. за дополнительный приемник. Я пользуюсь Phottix Odin, который стоит порядка 13,5 тыс. рублей и около 5,3 тыс. за дополнительный приемник. Обзор этого радиосинхронизатора можно посмотреть тут: Phottix Odin TTL для Canon.
За что такие деньги? За полное удаленное управление фотовспышками. Все настройки производятся с камеры или передатчика. Камера думает, что на ней установлена вспышка, вспышка думает, что она установлена на камере. Нет необходимости бегать к двухметровой стойке, чтобы изменить мощность импульса или зуммировать головку вспышки. Если нет времени или возможности менять параметры, автоматический режим придет на помощь, синхронизация на 1/8000? Легко!
Например, я ставлю стойку в удобном месте и свободно перемещаюсь по залу в поисках сюжета:

Или снимаю на улице:

“+”:
— полный контроль над вспышками,
— поддержка TTL,
— синхронизация на 1/8000. Даже студийных моноблоков,
— управление группами,
— возможность комбинации любых импульсных источников,
— большая дальность действия, до 100 метров,
— синхронизация по задней шторке,
— возможность обновления прошивки.

Настройка вспышки: режимы работы вспышки

В этой статье будут рассмотрены режимы, которые можно выставить на самой вспышке при нажатии на кнопку Mode (Режим). Поэтому не путайте эти режимы работы вспышки с режимами синхронизации вспышки и фотоаппарата. Также оговорюсь, что в основном речь будет идти о работе с внешней вспышкой. Но на некоторых фотоаппаратах даже встроенная вспышка может иметь расширенные функции управления и несколько режимов работы. Подробнее о разнице между встроенной и внешней вспышкой читайте тут.

Основных режимов работы вспышки не так много – всего три:

Автоматический (ETTL, TTL, i-TTL, ADI и т.п.)

Мануальный / Ручной – Manual

Обычно топовые вспышки могут работать во всех этих режимах, но также существуют вспышки, у которых, например, нет режима Multi и/или поддержки TTL. Но прежде чем расстраиваться из-за отсутствия какого-то режима или заказывать самую дорогую вспышку, давайте разберемся – а так ли нужны эти дополнительные режимы съемки?

Режим вспышки Manual

Этот режим аналогичен Ручному режиму съемки в вашем фотоаппарате – все настройки подбираются и выставляются вручную. К основным настройкам вспышки в ручном режиме относятся:

Мощность импульса – влияет на яркость освещения и расстояние, на котором объекты окажутся освещены светом от вспышки. Мощность обычно регулируется по шкале от 1/1 (максимально возможная мощность вашей вспышки) до 1/16, 1/32, 1/64 или 1/128 от максимальной мощности. Шкала градаций мощности различается в зависимости от модели вспышки. Чем больше значений (например, от 1/1 до 1/128), тем больше свободы управления и тонкостей при подстройке яркости импульса. Но и со вспышками, минимальная мощность импульса которых 1/16, вполне можно работать в большинстве ситуаций.

Большинство современных вспышек оснащены дисплеем, на котором высвечивается выставленное значение мощности в виде числового обозначения. Но встречаются вспышки без дисплея, где индикатором выставленной мощности служит своего рода шкала со светящимися лампочками. В этом случае чем больше лампочек зажжено, тем мощнее импульс выставлен. Чтобы узнать наверняка, каким образом устанавливается мощность именно на вашей вспышке, откройте инструкцию к ней. Если вы купили б/у вспышку без инструкции, наберите название и модель вспышки в поисковике с добавлением словосочетания «инструкция» или «инструкция на русском». Почти все инструкции есть в электронном виде в интернете для бесплатного просмотра и/или скачивания.

Читайте также:  Выбор объектива для съемки росы на мухе

Zoom вспышки (не путать с зумом на объективе, это разные настройки, хотя и взаимосвязаны) – регулирует угол распространения и дальность «добивания» импульса от вспышки. Обычно рекомендуется выставлять значения зума внешней вспышки в соответствии с выбранным фокусным расстоянием объектива. Так, чем больше фокусное расстояние объектива, на который ведется съемка, тем меньше угол обзора, но больше расстояние от точки съемки до объекта съемки. Соответственно, для нормального освещения кадра при съемке с длиннофокусным объективом, нужен световой импульс, который добьет на большее расстояния. При этом сам световой пучок может быть более узким – не за чем освещать объекты по краям кадра, которые не участвуют в сюжете съемки.

Наоборот, при съемке с широкоугольным объективом важнее осветить большую площадь сцены, т.к. у широкоугольных объективов бОльший угол обзора. При этом объекты съемки находятся намного ближе к точке съемке, поэтому световой импульс должен быть рассчитан на короткое расстояние.

Ручной режим управления вспышкой есть практически у всех внешних вспышек и даже встречается у некоторых встроенных вспышек. Существуют полностью мануальные вспышки (они обычно стоят гораздо дешевле), которые работают только в режиме ручных настроек.

Ручной режим работы со вспышкой, так же как и ручной режим на фотоаппарате, требует не только понимания настроек, но и некоторого опыта. Если настройку зума вспышки в ручном режиме можно выставить, опираясь на фокусное расстояние объектива, то параметр мощности импульса выставляется в основном экспериментальным путем.

Значение мощности импульса вспышки зависит от следующих параметров:

условия освещения (вечер, ночь, сумерки, помещение с недостаточным светом, съемка на закате и проч.)

расстояние до объекта съемки (чем ближе находится объект съемки, тем меньше нужна мощность для его нормального освещения вспышкой) – вспоминаем закон распределения света в пространстве

выставленные настройки экспозиции (выдержка, диафрагма, ISO) – можно уже при помощи регулировки параметров экспозиции пропустить достаточное количество окружающего света, а вспышкой лишь немного подсветить передний план (мощность 1/16 – 1/64). Обычно такие снимки выглядят более естественно. Но если вам нужно получить ярко освещенный главный объект на переднем плане на черном фоне – выставляем максимальный импульс (1/1 – 1/4) и подбираем настройки экспозиции по этому импульсу

использование направленного (прямо на объект, без насадок), отраженного или рассеянного света – при использовании вспышки на отражение или применение рассеивающих насадок (рассеивающие колпачки, мини-софтбоксы) снижает интенсивность светового потока. Поэтому чаще всего для отраженного или рассеянного света от вспышки можно выбирать более мощный импульс, чем при использовании направленного света от «голой» вспышки

Режим вспышки TTL

Режим TTL, который может буквенно обозначаться по-разному в зависимости от производителя. Смысл один и тот же — это режим автоматического подбора настроек вспышки. В современных вспышках Canon этот режим обозначается ETTL, в Nikon – i-TTL.

Аббревиатура TTL происходит от «Through The Lens», что дословно переводится «через объектив». Это означает, что автоматический экспозамер для подбора настройки мощности вспышки происходит путем оценки освещенности в кадре через линзы объектива. Для этого используется предварительный оценочный импульс, который позволяет произвести замер экспозиции. Преимущество такого метода замера экспозиции позволяет учесть характеристики используемого объектива – во время замера делаются поправки на светосилу объектива, накрученные фильтры и насадки и угол обзора.

Технология TTL претерпела несколько модификаций за время развития фототехники. Так, в старых пленочных зеркальных фотоаппаратах для автоматического управления вспышкой использовалась технология замера по инфракрасному импульсу (A-TTL в камерах Canon), затем модифицировалась в замер по предварительному импульсу (ETTL в камерах Canon). Последняя модификация (ETTL-II в камерах Canon) также учитывает расстояние от точки съемки до объекта в кадре.

При выборе вспышки обращайте внимание, поддерживает ли она технологию TTL (вашего производителя, соответственно). Так, существуют мануальные вспышки, которые совсем не поддерживают автоматический режим работы. Также бывают вспышки, которые поддерживают, например, более старую технологию, чем ваша камера. Например, у вас новая камера с режимом ETTL-II, а вспышка поддерживает только ETTL. Это не означает, что они не совместимы; техника, которая работает на более продвинутых технологиях автоматического замера, обычно поддерживает и менее продвинутые. Таким образом, вы будете работать с технологией ETTL, а не ETTL-II.

Аналогично выглядит обратная ситуация. Например, вы надеваете последнюю модель вспышки с поддержкой ETTL-II на старенькую камеру. Если вспышка «родная» (т.е. к камере Canon – вспышка Canon и т.д.), то система «фотоаппарат» — «вспышка» автоматически сориентируется и определит технологию доступную взаимодействия.

Съемка со вспышкой в автоматическом режиме, по сути, напоминает съемку в режиме «Авто» на фотоаппарате. Ваша камера замеряет экспозицию и подбирает подходящее (на ее взгляд) значение мощности импульса вспышки и параметр «зум» в зависимости от типа объектива (выставленное фокусное расстояние определяется автоматически даже при использовании зум-объектива). Причем, совсем не обязательно использовать вспышку в режиме TTL, только когда на фотоаппарате выставлен автоматический или полуавтоматический режим. Эти два режима никак не привязаны друг к другу. Вы можете спокойно снимать в ручном режиме M на фотоаппарате и использовать режим автоматического управления вспышкой.

В большинстве случаев вспышка сработает нормально для заданного сюжета. Но следует понимать, что автоматика фототехники не может учитывать все тонкости и особенности съемки. Автоматический расчет строится исходя из средней освещенности средне-серых объектов в кадре. Причем расчеты в автоматического замера экспозиции для настройки вспышки нормально срабатывают только при направлении вспышки «в лоб» и использовании вспышки либо на «горячем башмаке», либо на синхронизаторе с поддержкой режима TTL. Задача для автоматики усложняется, когда вспышка работает на отражение – автоматически сложно рассчитать, как упадет отраженный свет на объект. Камера не может оценить, под каким углом и на какое расстояние отразится свет вспышки. В результате настройки выставляются уже примерно.

Также существует множество ситуаций, когда имеет смысл перейти в ручной режим управления вспышкой. Чаще всего я работаю именно в ручном режиме вспышки – мне так проще отконтролировать процесс. Режим TTL подходит, прежде всего, для начинающих фотографов, которым трудно разобраться с настройками, а также для ситуаций, когда вам либо некогда, либо просто не хочется задумываться о настройках вспышки, а сюжет меняется очень быстро (репортажная съемка, путешествие и т.п.).

Даже в режиме TTL есть возможность вносить корректировку в работу вспышки. Для этого существует настройки компенсации вспышки, которая аналогична настройке экспокоррекции в фотоаппарате. Компенсация вспышки позволяет установить импульс ярче или слабее, чем значение, рассчитанное автоматически. При этом вручную задается значение по шкале (от -3 до +3 ступеней экспозиции), на которое вы компенсируете мощность вспышки. Так, если при съемке в автоматическом режиме вспышки при съемке тестового кадра вам кажется, что вспышка сработала недостаточно мощно, выставляем экспокоррекцию в плюс, и наоборот.

Для встроенной вспышки существует аналогичная настройка, которую можно выставить в Меню фотоаппарата. Меню — > Компенсация вспышки или Меню -> Управление вспышкой — > Встроенная вспышка — > Компенсация вспышки. Путь к настройкам может отличаться в зависимости от производителя и модели камеры. Если не можете найти эти настройки «методом тыка», открывайте инструкцию.

Также в настройках фотоаппарата Меню -> Управление вспышкой существует настройка экспозамера при работе со вспышкой. Если у вас сюжет со сложным освещением (съемка против солнца, например) или вам нужно при помощи вспышки правильно подсветить и проэкспонировать только одну часть кадра, выбирайте точечный или частичный режим экспозамера. Иначе камера замеряет освещенность по всей площади кадра, и все объекты становятся равнозначными. В результате подбор настроек может дать недосвет на одних объектах или пересвет на других.

Чаще всего вспышка в режиме TTL дает достаточно мощный импульс, особенно при съемке ночью. В итоге на фотографии – белые лица, черный фон, а вспышка срабатывает на максимальной мощности, что приводит к быстрому перегреву и расходу батареек. Выход – учиться снимать в мануальном режиме или умело использовать компенсацию вспышки.

Режим Multi

Если в режимах Manual и TTL вспышка делает только один импульс за время выдержки, то в режиме Multi вспышка срабатывает несколько раз за время, пока открыт затвор фотоаппарата. В результате можно получать интересные эффекты – несколько изображений одного и того же объекта в одном кадре, без использования какой-либо обработки.

Режим Мульти – это также режим, который полностью управляется вручную. Но помимо параметров мощности импульса и зума вспышки (как в режиме M), вам необходимо задать еще 2 параметра:

Количество импульсов – сколько раз сработает вспышка

Частота импульсов (в Гц) – чем больше частота, тем меньше будет промежуток времени между двумя соседними импульсами вспышки

Не все вспышки поддерживают режим Multi. Скажу больше – в большинстве вспышек этого режима обычно нет. Но этот режим используется в основном для специфической или экспериментальной съемки. В ежедневной работе этот режим бесполезен. Если он есть в вашей вспышке – отлично, можно побаловаться! Если его нет – не отчаивайтесь, не так уж велика потеря. Подробнее о съемке со вспышкой в режиме Мульти я рассказывала в своем онлайн-курсе «Цифровая фотография – это легко!» Начальный уровень.

Подробнее про работу со вспышкой в режиме Manual в помещении смотрите в записи МК «Работа с внешней вспышкой в помещении».

Оцените статью
Добавить комментарий